sp³ C-H Alkylation with Olefins

,

YAN XU DEC. 3, 2014

- 1) sp³ C-H Alkylation via Directed C-H activation
- 2) Hydroaminoalkylation (still via C-H activation)
- 3) Hydrohydroxyalkylation (via radical chemistry)
- 4) Hydrohydroxyalkylation (via transfer hydrogenation chemistry)

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)
- 3) Hydrohydroxyalkylation (via radical chemistry)
- 4) Hydrohydroxyalkylation (via transfer hydrogenation chemistry)

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)
- 3) Hydrohydroxyalkylation (via radical chemistry)
- 4) Hydrohydroxyalkylation (via transfer hydrogenation chemistry)

Yong-Qiang Tu, Angew. Chem. Int. Ed. 2009, 48, 8761

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)
- 3) Hydrohydroxyalkylation (via radical chemistry)
- 4) Hydrohydroxyalkylation (via transfer hydrogenation chemistry)

sp³ C-H Alkylation with Olefins Through C-H activation

,

YAN XU DEC. 3, 2014

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)

Rare-earth metal:

Strong oxophilicity

High activity of rare-earth alkyl species toward olefin

	Si Si tBu N I	N M 2-N (M = Sc, Y, Sm	R N 1 1, Gd, Lu)	are-earth metal: Strong oxophili High activity of	city rare-earth alkyl species toward olefin
Ja	_OMe _Ph [i +	[M] Ph ₃ C][B(C ₆ F ₅) ₄] 70 °C, 24 h toluene	OMe + (5aa	OMe Ph Ph 6aa	
Entry	[M]	Yield of 5 a	a [%] ^[b]	rield of 6aa [%] ^[b]	
1 ^[c]	1	0		0	
2	2 -Sc	60		15	
3	2-Sc ^[d]	58		12	
4	2 -Y	94 (91)		2	
5	2 -Gd	91		1	
6	2 -Sm	1		0	
7	2 -Lu	17		0	

[a] Reaction conditions: **[M]** (0.025 mmol), $[Ph_3C][B(C_6F_5)_4]$ (0.025 mmol), **3a** (1 mmol), **4a** (1.5 mmol), toluene (3 mL), 70 °C, 24 h, unless otherwise noted. [b] Yield (based on **3a**) measured by GC analysis. Yield of isolated product is given in parentheses. [c] With or without $[Ph_3C][B(C_6F_5)_4]$. [d] **4a** (1 mmol).

Olefin: must be terminal Ethylene: oligomer

Zhaomin Hou, ACIE. 2012, **51**, 12828 –12832

1

				Ć	\bigcirc	\bigcirc
M N) + A -	[Ln] (4.0 mol %) [B] (4.0 mol %) toluene, 70 °C			.N
2- M Sm, Gd, Lu)	Entry	[Ln] ^[b]	[B]	t [h]	Yield 3 a [%] ^[c]	Yield 3 b [%]
	1	[C ₅ Me ₅ ScR ₂]	$B(C_6F_5)_3$	24	5	_
	2	[C ₅ Me ₅ YR ₂]	$B(C_6F_5)_3$	24	0	-
	3	[C₅Me₅ScR ₂]	$[Ph_3C][B(C_6F_5)_4]$	24	5	-
	4	[C ₅ Me ₅ YR ₂]	$[Ph_3C][B(C_6F_5)_4]$	24	40	-
\rightarrow	5	$[C_5Me_5YR_2]$	$[Ph_3C][B(C_6F_5)_4]$	48	65	-
	6	[C ₅ Me ₅ YR ₂]	-	24	0	-
	7	-	$[Ph_3C][B(C_6F_5)_4]$	24	0	-
	8	$[C_5Me_5LaR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	0	-
	9	$[C_5Me_5SmR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	10	-
	10	$[C_5Me_5GdR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	23	-
	11	$[C_5Me_5LuR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	8	-
	12 ^[d]	$[C_5Me_5YR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	25	-
	13	$[C_5Me_5SiMe_3YR_2]$	$[Ph_3C][B(C_6F_5)_4]$	24	31	-
	14	[C₅Me₄HYR₂]	$[Ph_{3}C][B(C_{6}F_{5})_{4}]$	24	49	-
\rightarrow	15	$[C_5H_5YR_2]$	$[Ph_{3}C][B(C_{6}F_{5})_{4}]$	24	89(85) ^[e]	-
	16 ^[f]	[C ₅ H ₅ YR ₂]	$[Ph_3C][B(C_6F_5)_4]$	24	-	99

`N∕

(M = Sc, Y)

[a] Reactions were carried out with 0.75 mmol of 2,6-lutidine and 0.5 mmol of norbornene in 2 mL of toluene at 70 °C, unless otherwise noted. [b] [Ln] = Half-sandwich rare-earth dialkyl complex; $R = Me_2N-2-CH_2C_6H_4$. [c] Yields of **3a** were determined by GC with tridecane as an internal standard. [d] Reaction was carried out at 50 °C. [e] Yield of the isolated product in parentheses. [f] Reaction was carried out with 2ha

Zhaomin Hou, ACIE. 2013, 52, 4418

Entry	Olefin	[Y]	t [h]	Product	Yield [%] ^[b]	Entry	Alkyl Pyridine	[Y]	t [h]	Product	Yield [%] ^[b]
1	Ph	[C ₅ H ₅ YR ₂]	24	Ph	79	1	N	[C ₅ H ₅ YR ₂]	6	Et Et Et N Et	97
2	Ph	$[C_5Me_5YR_2]$	24	Ph	70	2	N	[C ₅ Me ₅ YR ₂]	4		92
	Ω _x					3 ^[c]	₩	[C ₅ Me ₅ YR ₂]	24		68
3	X = Me	[C ₅ Me ₅ YR ₂]	24	X = Me	67 67		N A			Et Et	
5	х=гы Х=F	$[C_5WE_5TR_2]$	24	X = F	63	4	ŢŢ		6		98
6	X=Cl	[C ₅ Me ₅ YR ₂]	24	X=Cl	74	7	Ť		v		50
7 ^[c]	∕⊂C ₄ H ₉	[C ₅ Me ₅ YR ₂]	24	C ₄ H ₉	69	5	∕N	[C ₂ H ₂ YR ₂]	3		99
8 ^[c]	∕⊂C₄H ₉	[C ₅ Me ₅ YR ₂]	72		92	5		[03:13:142]	5	Et Et	
9	\bigcirc	$[C_5H_5YR_2]$	24		97	6	Ph	[C ₅ H ₅ YR ₂]	12	Ph Et	95
10 ^[d]	\bigcirc	$[C_5H_5YR_2]$	24	N	65	7	N	[C ₅ H ₅ YR ₂]	12		95
11 ^[d]		$[C_5H_5YR_2]$	24	N.	41	8	tBu N	[C ₅ Me ₅ YR ₂]	12	/Bu N Bu	58
12 ^[d]	\downarrow	[C ₅ H ₅ YR ₂]	24	N	51	9	~~N	[C ₅ H ₅ YR ₂]	2		93

Entry	Olefin	[Y]	t [h]	Product	Yield [%] ^[b]	Entry	Alkyl Pyridine	[Y]	t [h]	Product	Yielc [%] ^{[b}
1	Ph	[C ₅ H ₅ YR ₂]	24	Ph Ph	79	1	N	[C ₅ H ₅ YR ₂]	6		97
2	∕~Ph	[C ₅ Me ₅ YR ₂]	24		70	2	N	$[C_5Me_5YR_2]$	4	Et Et	92
3	X=Me	[C ₅ Me ₅ YR ₂]	24	X=Me	67	3 ^[c]	N	$[C_5Me_5YR_2]$	24	N Et	68
4 5 6	X = tBu X = F X = CI	$\begin{bmatrix} C_5 M e_5 Y R_2 \end{bmatrix} \\ \begin{bmatrix} C_5 M e_5 Y R_2 \end{bmatrix} \\ \begin{bmatrix} C_5 M e_5 Y R_2 \end{bmatrix}$	24 24 24	X = tBu X = F X = CI	67 63 74	4	Ň	$[C_5H_5YR_2]$	6	Et N Et	98
7 ^[c]	∕∕C₄H ₉	[C ₅ Me ₅ YR ₂]	24		69	5	N	[C ₅ H ₅ YR ₂]	3		99
8 ^[c]	C ₄ H ₉	[C ₅ Me ₅ YR ₂]	72 24	$ \begin{array}{c} $	92 97	6	Ph	[C ₅ H ₅ YR ₂]	12		95
10 ^[d]	\bigcirc	$[C_5H_5H_2]$	24		65	7	Ň	[C ₅ H ₅ YR ₂]	12		95
11 ^[d]		[C ₅ H ₅ YR ₂]	24		41	8	/Bu N	$[C_5Me_5YR_2]$	12	tBu N Bu	58
12 ^[d]		[C ₅ H ₅ YR ₂]	24		51	9	N	$[C_{s}H_{s}YR_{2}]$	2	Et Et	93

Ph

non-reactive substrates:

cis/trans-2-butene, 1-hexene, 1-butene, 2-methylpropene, norbornylene, and 2-butyne

Zhi-Xiang Yu, JACS. 2010, 132, 4542

Zhi-Xiang Yu, ACIE. 2011, 50, 2144

Zhi-Xiang Yu, ACIE. 2011, 50, 2144

Zhi-Xiang Yu, ACIE. 2011, 50, 2144

Diene coordination disfavored the double-bond isomerization

	N NH Ph		R^1 R^2 R^2 R^2		
Entry	Alkene	R ¹	R ²	Product	Isolated yield (%)
1	2a	Bu	Н	4 a	95
2	2b	C ₈ H ₁₇	Н	4b	93
3	2c	Bu ^t	Н	4c	72
4	2d	Cyclohexyl	Н	4d	75
5	2e	Ph	Н	4e	70
6	2f	Bn	Н	4f	85
7	2g	-(CH ₂) ₃ -		4g	70
8	2ĥ	-(CH ₂) ₄		4h	60

		yield	s, % ^b		
entry	solvent	2a	3a	recovery of 1a	
1	toluene	22	12	25	
2	CH ₃ CN	27	0	55	
3	THF	10	0	86	
4	dioxane	0	0	nd ^c	
5	DMF	0	0	nd ^c	
6	DMSO	0	0	nd ^c	
7	MeOH	14	31	9	
8	EtOH	8	86	0	
9 -	→ ⁱ PrOH	0	92	0	

^{*a*} Reaction conditions: **1a** (1 mmol), $Ru_3(CO)_{12}$ (0.08 mmol), ethylene (initial pressure 10 atm at 25 °C in a 50 mL stainless autoclave), CO (1 atm), solvent (2 mL) at 140 °C for 20 h. ^{*b*} Isolated yields based on **1a**. ^{*c*} **1a** was recovered, but the amount was not determined.

	cat. Ru ₃ (CO) ₁₂ CO, H ₂ C=CH ₂		
3 N 4 6 R 5 1	2-propanol 140 °C, 20 h	R 2	F 3

	yields		
R	2	3	recovery of 1
H (1a)	0	92 (54:46)	0
3-Me (1b)	0	76 (70:30)	0
4-Me (1c)	0	90 (66:34)	0
5-Me (1d)	0	93 (61:39)	0
6-Me (1e)	39	11 (52:48)	35
3-OMe (1f)	0	86 (52:48)	0
6-OMe (1g)	11	Ó	77
5-CF ₃ (1h)	0	94 (63:37)	0
4-COOMe (1i)	no reaction	. /	nd

yields, % ^{b,c}				
R	2	3	recovery of 1	
H (1a)	0	92 (54:46)	0	
3-Me (1b)	0	76 (70:30)	0	
4-Me (1c)	0	90 (66:34)	0	
5-Me (1d)	0	93 (61:39)	0	
6-Me (1e)	39	11 (52:48)	35	
3-OMe (11)	0	86 (52:48)	0	
6-OMe (1g)	11	0	77	
5-CF ₃ (1h)	0	94 (63:37)	0	
4-COOMe (1i)	no reaction		nd	

Shinji Murai J. Am. Chem. Soc., 2001, 123, 10935

		och a
vie	ds	0,0,0
,		/0

	-			
R	2	3	recovery of 1	
H (1a)	0	92 (54:46)	0	
3-Me (1b)	0	76 (70:30)	0	
4-Me (1c)	0	90 (66:34)	0	
5-Me (1d)	0	93 (61:39)	0	
6-Me (1e)	39	11 (52:48)	35	
3-OMe (1f)	0	86 (52:48)	0	
6-OMe (1g)	11	0	77	
5-CF ₃ (1h)	0	94 (63:37)	0	
4-COOMe (1i)	no reaction		nd	

ĊΝ

Ph 🤇 O

N Bu^t

NPy

5

13

14 90% (80:20)

Shinji Murai J. Am. Chem. Soc., 2001, 123, 10935

Shinji Murai J. Am. Chem. Soc., 2001, 123, 10935

1) H/D exchange experiment

" provided good evidence for the reversibility of C-H bonds between substrates and reactants (alkenes), indicating that the cleavage of C-H bonds is not the rate-determining step"

Shinji Murai J. Am. Chem. Soc., 2001, 123, 10935

Bert U. W. Maes Chem. Eur. J. 2012, 18, 10393

Py = pyridin-2-yl

Entry	Additive	pK _a	1 a ^[a]	2 a ^[a]	3a ^[a,b]
1	_	_	38	54	8
2	AcOH	3.58	18	63	19
3	PivOH	5.01	26	60	14
4 ^[c,d]	trans-1,2-Cy(COOH)2	4.18, 5.93	7	65	28
5	cis-1,2-Cy(COOH)2	4.34, 6.76	17	64	19
6	(4-MeO)C ₆ H ₄ COOH	4.53	25	60	15
7	PhCOOH	4.20	23	61	16
8	(4-F)C ₆ H ₄ COOH	4.14	17	62	21
9	(3,4,5-tri-F)C ₆ H ₂ COOH	3.46	11	59	30
10	C ₆ F ₅ COOH	1.60	25	60	15
11	phthalic acid	2.98, 5.28	90	10	0
12	p-TsOH	1.99	57	40	3
13	Py-HCl	5.21	46	47	7
14	Et ₃ N·HCl	10.75	48	46	6
15	AcOK	-	62	35	3
16	(3,4,5-tri-F)C ₆ H ₂ COOK	-	83	16	1

Py = pyridin-2-yl

E	Entry	Additive	pK _a	1 a ^[a]	2 a ^[a]	3a ^[a,b]	
1		-	-	38	54	8	
2	2	AcOH	3.58	18	63	19	
3		PivOH	5.01	26	60	14	
4	[c,d]	trans-1,2-Cy(COOH)2	4.18, 5.93	7	65	28	
5	;	cis-1,2-Cy(COOH)2	4.34, 6.76	17	64	19	
6	i	(4-MeO)C ₆ H ₄ COOH	4.53	25	60	15	
7		PhCOOH	4.20	23	61	16	
8		(4-F)C_H_COOH	4.14	17	62	21	
9)	(3,4,5-tri-F)C ₆ H ₂ COOH	3.46	11	59	30	
1	0	C ₆ F ₅ COOH	1.60	25	60	15	
1	1	phthalic acid	2.98, 5.28	90	10	0	
1	2	p-TsOH	1.99	57	40	3	
1	3	Py•HCl	5.21	46	47	7	
1	4	Et ₃ N•HCl	10.75	48	46	6	
1	5	AcOK	_	62	35	3	
1	.6	(3,4,5-tri-F)C ₆ H ₂ COOK	-	83	16	1	

" carboxylic acid / alcohol has a significant effect on catalyst initiation "

Bert U. W. Maes Chem. Eur. J. 2012, 18, 10393

Bert U. W. Maes Chem. Eur. J. 2012, 18, 10393

Bert U. W. Maes Adv. Synth. Catal. 2014, 356, 1610

Chae S. Yi Organometallics 2004, 23, 5392

(consistent with a rate-limiting N-H bond activation step)

2

red. el.

[Ru]

 $1 = (PCy_3)_2(CO)RuHCI$

R = Si(OMe)₃

CH₂=CH₂

R

[Ru]-N

[ku]—N

red. el.

R

N-H

Chatani's work (ref 7c)

Takanori Shibata Org. Lett., 2011, 13, 4692

R = Me (3a): 41% (24 h)

entry	Х	chiral ligand	yield $(\%)^b$	ee (%)
1	BF_4	(S)-BINAP	37	70
2	BF_4	(S)-tolBINAP	62	80
3	BF_4	(S)-xylylBINAP	75	10
4	BF_4	(S)-H ₈ -BINAP	81	56
5	BF_4	(R)-DM-H ₈ -BINAP	84	-37
6	OTf	(S)-tolBINAP	48	81
7	PF_6	(S)-tolBINAP	24	74
8	BARF	(S)-tolBINAP	9	40
9^c	BF_4	(S)-tolBINAP	76	88
10^d	BF_4	(S)-tolBINAP	75	86

For substrate scope: R = Me, Et Olefin = styrene, diene,

ee = 61-90% terminal olefin's yield is low

^{*a*} Conditions: 2-(ethylamino)pyridine (1) (0.1 mmol), styrene (0.8 mmol), PhCl (0.2 mL), unless otherwise noted. ^{*b*} Isolated yield. ^{*c*} DME was used as a solvent at 75 °C for 48 h. ^{*d*} Less amount of styrene (0.3 mmol) was used, and DME was used as a solvent at 85 °C for 72 h.

R = Me (3a): 41% (24 h)

entry	Х	chiral ligand	yield $(\%)^b$	ee (%)
1	BF_4	(S)-BINAP	37	70
2	BF_4	(S)-tolBINAP	62	80
3	BF_4	(S)-xylylBINAP	75	10
4	BF_4	(S)-H ₈ -BINAP	81	56
5	BF_4	(R)-DM-H ₈ -BINAP	84	-37
6	OTf	(S)-tolBINAP	48	81
7	PF_6	(S)-tolBINAP	24	74
8	BARF	(S)-tolBINAP	9	40
9^c	BF_4	(S)-tolBINAP	76	88
10^{d}	BF_4	(S)-tolBINAP	75	86

For substrate scope: R = Me, Et Olefin = styrene, diene,

ee = 61-90% terminal olefin's yield is low

^{*a*} Conditions: 2-(ethylamino)pyridine (1) (0.1 mmol), styrene (0.8 mmol), PhCl (0.2 mL), unless otherwise noted. ^{*b*} Isolated yield. ^{*c*} DME was used as a solvent at 75 °C for 48 h. ^{*d*} Less amount of styrene (0.3 mmol) was used, and DME was used as a solvent at 85 °C for 72 h.

N N H 1n, 1a	`R + R'− a 4	[l + rac ==R' la, 4b	r(cod) ₂]BF ₄ -BINAP + TfOH (10 mol%) PhCI 5 °C (bath temp.)	R' N N H 5a-5c
Entry ^a	R	R′	Time (h)	Yield (%), ee (%)
1	H (1n)	Ph (4a)	8	82 (5a)
2 ^b	H (1n)	Ph (4a)	24	59 (5a)
3	H (1n)	n-C ₄ H ₉ (4b)	24	42 (5b)
4 ^{b,c}	Me (1a)	n-C ₄ H ₉ (4b)	18.5	32 (5c), 89%

Takanori Shibata Tetrahedron 68 (2012) 9009

 $MeO \begin{pmatrix} N \\ BO \\ 4a \\ 63\% \\ 63\% \\ 42\% \\ 64$

Till Opatz Org. Lett., **2014**, *16*, 4201

Kinetic competent and chemical competent catalyst

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)

- 1) sp³ C-H Alkylation via Directed C-H activation
 - Rare-earch-metal-philic DG
 - Allylic C-H bond alkylation (double bond as DG)
 - Pyridine type DG
- 2) Hydroaminoalkylation (still via C-H activation)

R ¹ -CH ₂ NH R ¹ -CH ₂	+ R ² −CH=CH ₂	$\frac{M[N(CH_2 - R^1)_2]_x (3)}{\text{toluene, 200 °C, 150h}}$	$R^{1} R^{2}$ $I I$ $R^{1}-CH_{2}-NH-CH-CH-CH_{3}$ A
1	2		-

R' in 1 and 3	R ² in 2	M in 3	Yield [%] ^b of 4
Н	n-C₄H₀	Nb	10
			12
Н	n-C ₄ H ₉	Та	20 ^a
			38 ^{.4}
Н	n-C ₄ H ₉	Zr	18
Н	Н	Nb	28°
н	CH ₃	Nb	21
CH ₃	Н	Nb	13°

* Isolated by distillation

$(CH_3)_2ND \xrightarrow{M(NMe_2)_n} (CH_3)(CH_2D)NH$					
catalyst	% H-D exchange ^c	insertn (turnovers) ^d			
Ti(NMe ₂) ₄	0e	0.0			
$Zr(NMe_2)_4$	37	0.0			
$Hf(NMe_2)_4$	0 <i>°</i>				
$Nb(NMe_2)_s$	67	4.5			
Ta(NMe ₂),	26	0.3			
$W(NMe_2)_n^b$	57	7.0			
$Sn(NMe_2)_4$	0 ^e	0.0			

 a All runs in evacuated sealed tubes 14 h at 160 $^\circ \rm C.$

$(CH_3)_2ND \xrightarrow{M(NMe_2)_n} (CH_3)(CH_2D)NH$					
catalyst	% H-D exchange ^c	insertn (turnovers) ^d			
Ti(NMe ₂) ₄	0 ^e	0.0			
$Zr(NMe_2)_4$	37	0.0			
$Hf(NMe_2)_4$	0 <i>°</i>				
$Nb(NMe_2)_s$	67	4.5			
$Ta(NMe_2)_5$	26	0.3			
$W(NMe_2)_n^b$	57	7.0			
$Sn(NMe_2)_4$	0 ^e	0.0			

^a All runs in evacuated sealed tubes 14 h at 160 °C.

 $Me_2NH + CH_2 = CHC_3H_7 \xrightarrow{cat.} MeHNCH_2C(CH_3)HC_3H_7$

yield not given

" The activity of the various metal amides for this reaction roughly parallels their efficacy for H-D exchange"

zirconocene- η^2 -imine complexes was formed faster from **N-alkyl** Organometallics **1994**, *13*, 190 **arylamido** complexes than from **dialkylamido** complexes.

John Hartwig J. Am. Chem. Soc., 2007, 129, 6690

Cannot use styrene and 1,2-disubstituted olefin

John Hartwig J. Am. Chem. Soc., 2007, 129, 6690

Ph、_CH ₃ H 1 equiv	³ + <i>n</i> -hexyl - 1.25 equiv	catalyst (4 mol % Ta toluene, 90 °C) ^{Ph} ∖Ń ★ H	CH ₃ 6
			% yield	6 ^a
entry	catalyst precurso	r 2.3 h	5.1 h	1 24
1	[Cl ₃ Ta(NMePh) ₂] ₂	(4) 34 ^b	53 ^b	72
2	$Ta(NMe_2)_5(1)$	0^{c}	0^{c}	0^{c}
3	[CLTa(NMePh)]•O	Eta (5) 2.1	3.8	14

$$R_{N}CH_{3} \xrightarrow{CH_{3}} \frac{1.1 \text{-octene (1.50 equiv), } [TaCl_{3}(NEt_{2})_{2}]_{2}(\mathbf{2})}{2. \text{ TsCl, NaOH, } H_{2}O-CH_{2}Cl_{2}, 22 \text{ °C}} \xrightarrow{R_{N}} \frac{n \text{-hexyl}}{\text{Ts}} CH_{3}$$

John Hartwig J. Am. Chem. Soc., 2008, 130, 14940

$$R_{N}CH_{3} \xrightarrow{CH_{3}} \frac{1.1 \text{-octene (1.50 equiv), } [TaCl_{3}(NEt_{2})_{2}]_{2}(\mathbf{2})}{2. \text{ TsCl, NaOH, } H_{2}O-CH_{2}Cl_{2}, 22 \text{ °C}} \xrightarrow{R_{N}} \frac{n \text{-hexyl}}{\text{Ts}} CH_{3}$$

John Hartwig J. Am. Chem. Soc., 2008, 130, 14940

Sven Doye Angew. Chem. Int. Ed. 2009, 48, 1153

Entry	Amine	R ¹	R ²	Alkene	R ³	R⁴	Product	Yield a + b [%] ^[b]	Selectivity a/b ^[c]
1	8	н	н	12	n-C ₆ H ₁₃	н	17 a/b	32	90:10
2	8	н	н	12	n-C ₆ H ₁₃	н	17 a/b	62 ^[d]	90:10
3	8	н	н	13	Bn	н	18 a/b	94	90:10
4	8	н	н	14	-(CH ₂)	5	19a/b	-	-
5	8	н	н	15	Ph	н	20 a/b	-	-
6	8	н	н	norborn	ene (16)		21	78	-
7	9	Me	н	12	n-C ₆ H ₁₃	н	22 a/b	20	95:5
8	9	Me	н	13	Bn	н	23 a/b	80	95:5
9	10	Me	Et	12	n-C ₆ H ₁₃	н	24 a/b	-	-
10	10	Me	Et	13	Bn	н	25 a/b	-	-
11	11	н	Ph	12	n-C ₆ H ₁₃	н	26 a/b	75	1:1
12	11	н	Ph	13	Bn	н	27 a/b	84	1:1

Entry	Amine	R ¹	R ²	Alkene	R ³	R⁴	Product	Yield a + b [%] ^[b]	Selectivity a / b ^[c]
1	8	н	н	12	n-C ₆ H ₁₃	н	17 a/b	32	90:10
2	8	н	н	12	n-C ₆ H ₁₃	н	17 a/b	62 ^[d]	90:10
3	8	н	н	13	Bn	н	18a/b	94	90:10
4	8	н	н	14	-(CH ₂)	5	19a/b	-	-
5	8	н	н	15	Ph	н	20a/b	-	- ←
6	8	н	н	norborn	ene (16)		21	78	- ←
7	9	Me	н	12	n-C ₆ H ₁₃	н	22 a/b	20	95:5
8	9	Me	н	13	Bn	н	23 a/b	80	95:5
9	10	Me	Et	12	n-C ₆ H ₁₃	н	24 a/b	-	- ←
10	10	Me	Et	13	Bn	н	25 a/b	-	- ←
11	11	н	Ph	12	n-C ₆ H ₁₃	н	26a/b	75	1:1
12	11	н	Ph	13	Bn	н	27 a/b	84	1:1

		Ph_N_ +	4 mol% catalyst 160 °C, 72 h	Ph_N	C ₆ H ₁₃ 17a P-C ₆ H ₁₃ 17b
	Entry	Catalyst		Yield 17 a + 17 b [%] ^[b]	Selectivity 17a/ 17b ^[c]
	1	[Ti(NMe ₂) ₄]		62	90:10
	2	[Cp ₂ TiMe ₂]		3	n.d. ^[d]
	3	[Ind ₂ TiMe ₂]		16	n.d. ^[d]
→	4	[{(η⁵-C₅H₄) (Me₂Si)N¢B (NMe₂)₂]	u}Ti-	77	>99:1
	5	$[{(\eta^5-C_5H_4)(Me_2Si)NtB}]$	u}TiMe₂]	75	> 99:1
	6	[(ebthi)TiMe ₂]		-	-

Sven Doye Angew. Chem. Int. Ed. 2009, 48, 1153

		Ph_N_+n-C ₆ H ₁₃	Ph_N	Ph_N		
		H 8 12	160 °C, 72 h	Ph_N	л-С ₆ Н ₁₃ 17b	
	Entry	Catalyst		Yield 17 a + 17 b [%] ^[b]	Selectivity 17a/ 17b ^[c]	
	1	[Ti(NMe ₂) ₄]		62	90:10	
	2	[Cp ₂ TiMe ₂]		3	n.d. ^[d]	
	3	[Ind ₂ TiMe ₂]		16	n.d. ^[d]	
→	4	[{(η ⁵ -C ₅ H ₄)(Me ₂ Si)NtB (NMe ₂) ₂]	u}Ti-	77	> 99:1	
	5	$[{(\eta^5-C_5H_4)(Me_2Si)NtB}]$	u}TiMe₂]	75	> 99:1	
	6	[(ebthi)TiMe ₂]		-	-	

Sven Doye Angew. Chem. Int. Ed. 2009, 48, 1153

[Ti(Bn)₄] ■ Slightly enhanced activity

■ First addition to styrene: 30% yield, 1:1 branch:linear

Laurel L. Schafer J. Am. Chem. Soc., 2009, 131, 2116

Laurel L. Schafer J. Am. Chem. Soc., 2009, 131, 2116

Zr: larger metal center2-pyridonate ligand: less sterically demanding

^{*a*} 20 mol% catalyst at 145 °C. ^{*b*} 40 mol% catalyst at 155 °C. ^{*c*} Ratio from ¹H NMR spectroscopy. ^{*d*} Isolated yield of derivatized products. ^{*e*} Consumption of starting material, determined by NMR. ^{*f*} NMR yield with 1,3,5-trimethoxybenzene as internal standard.

Zr: larger metal center2-pyridonate ligand: less sterically demanding

^{*a*} 20 mol% catalyst at 145 °C. ^{*b*} 40 mol% catalyst at 155 °C. ^{*c*} Ratio from ¹H NMR spectroscopy. ^{*d*} Isolated yield of derivatized products. ^{*e*} Consumption of starting material, determined by NMR. ^{*f*} NMR yield with 1,3,5-trimethoxybenzene as internal standard.

[a] Yield of isolated product given in brackets; conversion was estimated by ¹H NMR spectroscopy. [b] 10 mol%; [c] [*N*-methylaniline] = 1 M. [d] *N*-methylaniline/1-octene 1:1.05. [e] [D₈]toluene as solvent. [f] *N*-methylaniline/1-octene 1:1.5. n.r. = no reaction.

Laurel L. Schafer Angew. Chem. Int. Ed. 2009, 48, 8361

For further improvement, See: Guofu Zi, *Chem. Commun.*, **2010**, *46*, 6296 Guofu Zi, *Dalton. Trans.*, **2011**, *40*, 1547

Laurel L. Schafer Angew. Chem. Int. Ed. 2009, 48, 8361

Sven Doye Angew. Chem. Int. Ed. 2009, 48, 1153

Only 105 °C: is this catalyst able to solve the styrene problem?

Sven Doye Angew. Chem. Int. Ed. 2009, 48, 1153

Only 105 °C: is this catalyst able to solve the styrene problem?

Ph N H	+ [^{n-C₆H₁₃}	cataly toluene,	T, t	Ph`N H	~~~ ^{n-C} e	;H ₁₃ + Ph	N n-C ₆ H ₁₃
1	2				3a		3b
Entry	Catalyst	mol%	т [°С]	t [h]	Yield 3 [%] ^[a]	a + 3 b	Selectivity 3 a/ 3 b ^[b]
1	[Ti(NMe ₂) ₄]	10	160	96	32		93:7
2		10	105	96	< 5		n.d.
3	[Ind ₂ TiMe ₂]	10	160	96	84		>99:1
4		10	105	96	97		>99:1
5		10	105	24	96		>99:1
6		5	105	24	96		>99:1
7		5	90	24	81		>99:1
8		5	80	24	86		>99:1
9		5	70	24	< 5		n.d.
10		2	105	24	90		>99:1
11		1	105	24	6		n.d.

 $L = NMe_2$ NH-CH₂-CR₂-(CH₂)₃-CH=CH₂

NH-CH₂-CR₂-(CH₂)₃-CH=CH₂

NH-CH₂-CR₂-(CH₂)₃-CH=CH₂

Zero-order rate dependence on aminoalkene

 $k_{obs}(1-H)/k_{obs}(1-D) = 7.3$ at 130°C with 5 mol% and 10 mol% $[Ti(NMe_2)_4]$

NH-CH₂-CR₂-(CH₂)₃-CH=CH₂

Sven Doye, Angew. Chem. Int. Ed. 2011, 50, 6401

 NH_2

Kai C. Hultzsch J. Am. Chem. Soc., 2012, 134, 3300

Catalyst activity can be enhanced by a more electron deficient ligand

		H +	$Ta cat.$ C_6D_6	Y5
2	Entry	Catalyst	Conditions	Conv. [%]
t-Bu—(Ta(NMe ₂) ₄	1	Ti(NMe ₂)₄	10 mol %, 160 °C, 96 h	32 ^[a,4c]
	2	TiBn₄	10 mol %, 160 °C, 96 h	77 ^[a,4c]
/-FI	3	Ind ₂ TiMe ₂	2 mol %, 105 °C, 24 h	90 ^[a,4d]
/) / · · · · 1	4	$Ta(NMe_2)_5$	5 mol %, 110 °C	n.r.
	5	[Cl ₃ Ta(NMePh) ₂] ₂	2 mol %, 90 °C, 24 h	72 ^[a,5b]
TaMe ₃ Cl ₂	6	tBu—(()Ta(NMe ₂) ₄	5 mol %, 110 °C, 63 h	96 ^[a,5c]
	7	TaMe ₃ Cl ₂	10 mol %, 110 °C, 30 h	91

		HN + U	Ta cat. C_6D_6	75
2	Entry	Catalyst	Conditions	Conv. [%]
t-Bu—∢ ∑Ta(NMe₂)₄	1	Ti(NMe ₂) ₄	10 mol %, 160 °C, 96 h	32 ^[a,4c]
	2	TiBn₄	10 mol %, 160 °C, 96 h	77 ^[a,4c]
I-PI	3	Ind ₂ TiMe ₂	2 mol %, 105 °C, 24 h	90 ^[a,4d]
1 1	4	$Ta(NMe_2)_5$	5 mol %, 110 °C	n.r.
	5	[Cl ₃ Ta(NMePh) ₂] ₂	2 mol %, 90 °C, 24 h	72 ^[a,5b]
TaMe ₃ Cl ₂	6	tBu—⟨(⊃Ta(NMe ₂) ₄ N Ar′	5 mol %, 110 °C, 63 h	96 ^[a,5c]
	7	TaMe ₃ Cl ₂	10 mol %, 110 °C, 30 h	91

		H +	$Ta cat.$ C_6D_6	75
2	Entry	Catalyst	Conditions	Conv. [%]
t-Bu—(Ta(NMe ₂) ₄	1	Ti(NMe ₂)₄	10 mol %, 160 °C, 96 h	32 ^[a,4c]
	2	TiBn₄	10 mol %, 160 °C, 96 h	77 ^[a,4c]
/-FI	3	Ind ₂ TiMe ₂	2 mol %, 105 °C, 24 h	90 ^[a,4d]
	4	$Ta(NMe_2)_5$	5 mol %, 110 °C	n.r.
	5	[Cl ₃ Ta(NMePh) ₂] ₂	2 mol %, 90 °C, 24 h	72 ^[a,5b]
TaMe ₃ Cl ₂	6	tBu—(⊂) N Aŕ	5 mol %, 110 °C, 63 h	96 ^[a,5c]
	7	TaMe ₃ Cl ₂	10 mol %, 110 °C, 30 h	91

Laurel L. Schafer Chem. Eur. J. 2013, 19, 8751

		N + M	$\xrightarrow{\text{Ta cat.}}_{C_6D_6} \qquad \qquad$	¥5
ρ	Entry	Catalyst	Conditions	Conv. [%]
t-Bu—(Ta(NMe ₂) ₄	1	Ti(NMe ₂)₄	10 mol %, 160 °C, 96 h	32 ^[a,4c]
	2	TiBn₄	10 mol %, 160 °C, 96 h	77 ^[a,4c]
/-FI	3	Ind ₂ TiMe ₂	2 mol %, 105 °C, 24 h	90 ^[a,4d]
	4	$Ta(NMe_2)_5$	5 mol %, 110 °C	n.r.
	5	[Cl ₃ Ta(NMePh) ₂] ₂	2 mol %, 90 °C, 24 h	72 ^[a,5b]
TaMe ₃ Cl ₂	6	tBu—(() N Aŕ∕	5 mol %, 110 °C, 63 h	96 ^[a, 5c]
	7	TaMe ₃ Cl ₂	10 mol %, 110 °C, 30 h	91

Laurel L. Schafer Chem. Eur. J. 2013, 19, 8751

Laurel L. Schafer Tetrahedron 2013, 69, 5737

minimum temperature required to achieve at least three turnovers within 20 h

- sufficient steric bulk is critical
- Electron withdrawing ligand is critical

Phosphoramidates

- increased electronwithdrawing properties
- tunable steric bulk at both phosphorus and nitrogen

minimum temperature required to achieve at least three turnovers within 20 h

- sufficient steric bulk is critical
- Electron withdrawing ligand is critical

Phosphoramidates

- increased electronwithdrawing properties
- tunable steric bulk at both phosphorus and nitrogen

Laurel L. Schafer Angew. Chem. Int. Ed. 2013, 52, 9144

O EtO-P EtO L ¹ -H	H N + Ia O EtO P N H L ² -H	$H = \begin{bmatrix} L-CITaMe \\ 20 h, 22 \\ end{tabular}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} c\\ c\\ c\\ \end{array} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \begin{array}{c} c\\ c\\ \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} c\\ c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} c\\ c\\ \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ c\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ c\\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ c\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ c\\ c\\ c\\ c\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c\\ $	H 3a 3a NH EtO L ⁵ -H
Entry	L	x mol%	Solvent	Conv. [%]
1 ^[b]	L	5	[D ₈]toluene	37
2 ^[b]	L ²	5	[D ₈]toluene	52
3 ^[b]	L ³	5	[D ₈]toluene	28
4 ^[b]	L^4	5	[D ₈]toluene	24
5 ^[b]	L⁵	5	[D ₈]toluene	0
6 ^[b]	L ²	10	[D ₈]toluene	76
7 ^[b]	L ²	10	hexanes	62
8 ^[c]	L ²	10	[D ₈]THF	26
9 ^[c]	L ²	10	[D ₈]toluene	86

[a] Reaction conditions: **1a** (0.5 mmol), **2a** (0.75 mmol), solvent (0.6 mL), [Ta] (*x* mol%), 20 h. Conversion determined by ¹H NMR spectroscopy. [b] In situ generated complex. [c] Isolated complex.

^{*a*} Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*} 5 mol %, 105 °C. ^{*c*} 10 mol %, 5 h. ^{*d*} 5 mol %, 120 °C, 36 h, C₆D₆.

entry	L	$\operatorname{conv}(\%)^b$	HAA/HA ^b	entry	L	$\operatorname{conv}(\%)^b$	HAA/HA ^b
1		91	0:91	10	\mathbb{P}^{Ph} \mathbb{P}_{Θ}	76	71:5
2		58	0:58	11	Mes N ⊖ O	16	8:8
3		8	0:8	12	N ⊕ OMe	75	70:5
4^c		>98	0:>98	13	F	86	54:32
5 ^{<i>d</i>}	N _☉ N [−]	(97) ^e 87	(20:77) ^e 52:35		^I N ⊖ ⊖		
6		3	n.d.				
7	€ N ⊕ O	9	8:1				
8	∬N _⊖ o	4	n.d.				
9	€ N ⊕ O	45	37:8				

e-withdrawing and steric less hindered ligand!

Laurel L. Schafer Org. Lett., 2013, 15, 6002

Ta-Cl bond [2.4959(8) Å] is significantly longer than Ta-NMe2(axial) bond [1.970(3) Å]
 the bonding the of Ta-N amido bond lengths are shorter in 1 than in 2

Improved metal accessibility

increased electrophilic nature of the metal center

Laurel L. Schafer J. Am. Chem. Soc., 2014, 136 (31), pp 10898

Laurel L. Schafer J. Am. Chem. Soc., 2014, 136 (31), pp 10898

Another unsolved problem: Styrene selectivity w/ [Ti]

Branched selectivity: has already been achieved by [Ta]

(Me₂N)₂T

Sven Doye Angew. Chem. Int. Ed. 2013, 52, 1806

Entry	Amine	2-MeAP-H [mol%]	Yield a+b [%] ^[a]	Selectivity a/b ^[b]	Entry	Amine	2-MeAP-H [mol%]	Yield a+b [%] ^[a]
1 2		10 20	79 (5 a/b) 76 (5 a/b)	32:68 34:66	19 20 21	PhH_ 14	10 20 10	$\begin{array}{c} 69 \ (25 \ a/b)^{[e,h]} \\ 40 \ (25 \ a/b)^{[e,h]} \\ 5 \ (26 \ a/b)^{[e]} \end{array}$
3	Н	10	31 (17a/b) ^[c]	32:68	22	Н 15	20	17 (26a/b) ^[e]
4	6 N	20	4 (17a/b)	33 :67	23 24	N 16	10 20	26 (27a/b) ^[e] 8 (27a/b) ^[e]
5	Н	10	31 (18a/b)	43:57				
6		20	2 (18a/b)	30:70				
7	Н	10	50 (19a/b)	35:65				
8	MeO 8	20	15 (19 a/b)	25:75				
9	H	10	61 (20a/b)	21:79				
10	€ ¶	20	32 (20 a/b) ^[d]	21:79				
11	н	10	48 (21a/b)	9:91				
12		20	4 (21a/b)	1:99				
13	Н	10	85 (22a/b)	8:92				
14	I1 Ph	20	30 (22a/b)	7:93				
15	Н	10	71 (23a/b) ^[e,f]	42:58				

27:73

20:80 12:88 Selectivity a/b^[b]

7:93 35:65 12:88 12:88

15:85 12:88

15		10	71 (23a/b) ^[e,f]
16		20	60 (23a/b) ^[e,f,g]
17	n-C ₆ H ₁₃ . ^H N 13	10	22 (24a/b) ^[e,f]
18		20	5 (24a/b) ^[e,f]

Summary

- sp³ C-H alkylation has been achieved via many different machanism
 Motel: d0 % d8
- Metal: d⁰ & d⁸
- Logical development of ligand and catalyst is critical
- Inspiration of our own work

Summary

- sp³ C-H alkylation has been achieved via many different machanism
- Metal: d⁰ & d⁸
- Logical development of ligand and catalyst is critical
- Inspiration of our own work

	temp, °C	% H-D	distributn of ² H label, ^b %		
catalyst		exchange c	CH ₂ D	CD ₂ H	CD_3
Ti(OEt) ₄	180	0 ^e			
$Zr(OEt)_4$	200	14	5	25	70
$Nb_2(OEt)_{10}$	200	18	27	41	32
$Ta_2(OEt)_{10}$	180	9			
$Ta_2(OEt)_{10}$	200	23	28	39	33
$Ta_2(OEt)_{10}$	220	47			
$Ta_2(OEt)_{10} + C_6H_5N^d$	200	55	38	39	23
$Ta_2(OEt)_{10} + Et_3N^d$	200	50			
W(OEt),	200	0 ^{e, f}			

Table II. H-D Exchange in CH₃CH₂OD Catalyzed by Transition-Metal Ethoxides^a

 $M \xrightarrow{OCH_2CH_3} \longrightarrow M \xrightarrow{M} C + CH_3CH_2OH \\ OCH_2CH_3 \xrightarrow{M} CH_2 \xrightarrow{-} CH_2$

"The predominance of multiply deuterated products, especially from the Zr catalyst, suggests that further metalation of the intermediate metallacycle is fast compared with the reverse reaction." In contrast to reactions catalyzed by bis(anilide) **4**, little product was obtained when the mono(anilide) **5** was used instead (Table 2, entry 3). This result suggests that the key η^2 -imine intermediate **3** does not form as readily by elimination of HCl·amine (eq 3) as by elimination of amine.

$$CI_{3}Ta \xrightarrow{X} HNMeR \xrightarrow{HNMeR} CI_{2}Ta \xrightarrow{X} HNMeR + HNMeR + HCI$$
(3)

	1 (5 mol %) 3 130 °C toluene	TBS	SO TsF, DBL 130 °C toluene	
entry	Ar	n	product	yield (%) ^a
1	Ph		\sim	67
2	PMP	3		67 ^b
3	p-Cl Ph		Ar ^{-N}	57 ^b
4	РМР	2	\frown	72
5	Ph	2	Ar N	69
6	PMP	1	Ar	48